Translational diffusion of macromolecules and nanoparticles modeled as non-overlapping bead arrays in an effective medium.
نویسندگان
چکیده
There are three objectives to the present work. First, starting from a boundary element (BE) formulation of low Reynolds number hydrodynamics, model the translational diffusion of macromolecules modeled as an array of non-overlapping beads, and show how this approach is equivalent to previous formulations of "bead hydrodynamics" and under what conditions. Second, show how this approach can be improved upon by accounting for the variation in forces over the surfaces of individual beads and also extending the approach to a gel modeled as an effective medium, EM. Third, develop a "combined obstruction and hydrodynamic effect" model of the translational diffusion of irregularly shaped macromolecules in a gel. In one of the cases studied, the BE approach is shown to be equivalent to previous "bead model" formulations in which intersubunit hydrodynamic interaction is modeled using the Rotne-Prager tensor. A bead model that accounts for the variation in hydrodynamic stress forces over the individual bead surfaces is shown to be in best agreement with exact results for simple bead arrays made up of 2-4 subunits. The translational diffusion of rods, modeled as strings of from 2 to 100 touching beads in dilute gels is examined. Interpolation formulas valid over a range of gel concentrations and rod lengths are derived for the parallel and perpendicular components of the diffusion tensor as well as the orientationally averaged diffusion tensor. The EM model accounts for the long-range hydrodynamic interaction exerted by the gel support matrix on the diffusing particle of interest but does not account for the reduction in diffusion caused by the direct obstruction of the gel, or steric effect. Both effects are accounted for by writing the translational diffusion in a gel as the product of two terms representing long-range hydrodynamic interaction and steric effects. Finally, the diffusion of a 564 base pair DNA in a 2% agarose gel is examined and model results are compared to experiment (Pluen, A.; Netti, P. A.; Jain, R. K.; Berk, D. A. Biophys. J. 1999, 77, 542-552). For reasonable choices of model parameters, fair agreement between theory and experiment is achieved.
منابع مشابه
“Coarse Grained" Bead Modeling of Macromolecules Transport in Free Solution and in a Gel
The modeling of transport behavior of charged particles carried out in our laboratory is based on classical continuum electro kinetic theory. It is applied to a variety of systems from small electrolyte ions to macromolecules including peptides, DNA and nanoparticles. Systems range from weakly charged particles to highly charged ones. Transport properties studied include conductance, electropho...
متن کاملNanoparticle diffusion in crowded and confined media.
We identify distinct mechanisms controlling slowing of nanoparticle diffusion through complex media featuring both rigid geometrical confinement and soft mobile crowders. Towards this end, we use confocal microscopy and single particle tracking to probe the diffusion of 400 nm nanoparticles suspended in Newtonian water, in a Newtonian glycerol/water mixture, or in a non-Newtonian polymer soluti...
متن کاملImpacts of Nanoparticles and Nano Rod Arrays on Optical Generation Rate in Plasmonic-Based Solar Cells
In this article, the effect of plasmonics properties of metal nanorods and nanoparticles on solar cell performance were investigated and simulated. Due to the classic solar cell disadvantages, it seems that a plasmonic solar cell is one of these methods. In plasmonic solar cells, because of plasmonic effect, a high electric field builds around metal nanoparticles so that high conversion efficie...
متن کاملFormulation of Ibuprofen Beads by Ionotropic Gelation
Microencapsulation has become a common technique in the production of controlled release dosage forms. Many results have been reported, concerning the use of alginate beads as controlled release drug formulations. Alginate has a unique gel-forming property in the presence of multivalent cations, in an aqueous medium. Ibuprofen is an excellent analgesic and antipyretic, non-steroidal anti-inflam...
متن کاملEffect of Exponentially Variable Viscosity and Permeability on Blasius Flow of Carreau Nano Fluid over an Electromagnetic Plate through a Porous Medium
The present investigation draws scholars' attention to the effect of exponential variable viscosity modeled by Vogel and variable permeability on stagnation point flow of Carreau Nanofluid over an electromagnetic plate through a porous medium. Brownian motion and thermophoretic diffusion mechanism are taken into consideration. An efficient fourth-order RK method along with shooting technique ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 112 18 شماره
صفحات -
تاریخ انتشار 2008